Funções exponenciais

Padrão

Funções Exponenciais:

função exponencial é uma das mais importantes funções da matemática. Descrita como ex (onde e é a constante matemática neperiana, base do logarítmo neperiano), pode ser definida de duas maneiras equivalentes: a primeira, como uma série infinita; a segunda, como limite de uma seqüência:

A função exponencial é achatada para x negativos, e cresce rapidamente para x positivos.
A curva ex jamais toca o eixo x, embora apresente tendência a se aproximar deste.

e^x = \sum_{n = 0}^{\infty} {x^n \over n!} = 1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} + \cdots
e^x = \lim_{n \to \infty} \left( 1 + {x \over n} \right)^n

Aqui, n! corresponde ao fatorial de nx é qualquer número real ou complexo.

Se x é real, então ex é sempre positivo e crescente. Conseqüentemente, sua função inversa, o logarítmo neperiano, ln(x), é definida para qualquer valor positivo de x. Usando o logarítmo neperiano, pode-se definir funções exponenciais mais genéricas, como abaixo:

axexlna

Para todo a > 0 e x \in \mathbb{R}.

A função exponencial também gera funções trigonométricas (como pode ser visto na equação de Eulerpara análises complexas), e as funções hiperbólicas. Então, tem-se que qualquer função elementar, exceto as polinomiais são criadas a partir da função exponencial.

As funções exponenciais “transitam entre a adição e a multiplicação” como é expressado nas seguintes leis exponenciais:

a0 = 1
a1a
axyaxay
a^{x y} = \left( a^x \right)^y
{1 \over a^x} = \left({1 \over a}\right)^x = a^{-x}
axbx = (ab)x

Estas são válidas para todos os números positivos reais ab e todos os números reais x. Expressões envolvendo frações e raízes podem freqüentemente serem simplificadas usando-se a notação exponencial porque:

{1 \over a} = a^{-1}
\sqrt[c]{a}^b = a^{b \over c}

Função exponencial e equações diferenciais

A maior importância das funções exponenciais nos campos das ciências é o fato de que essas funções são múltiplas de suas próprias derivadas.

{d \over dx} a^x = (\ln a) a^x

Se a taxa de crescimento ou de decaimento de uma variável é proporcional ao seu tamanho, como é o caso de um crescimento populacional ilimitado, juros continuamente computados ou decaimento radiativo, então a variável pode ser escrita como uma função exponencial do tempo.

A função exponencial então resolve a equação diferencial básica

{dy \over dx} = y

e é por essa razão comumente encontrada em equações diferenciais. Em particular a solução de equações diferenciais ordinárias pode freqüentemente ser escrita em termos de funções exponenciais. Essas equações incluem a equação de Schrödinger e a equação de Laplace assim como as equações para o movimento harmônico simples.

Função exponencial no plano complexo

Quando considerada como uma função definida no plano complexo, a função exponencial retém as importantes propriedades:

ezwezew
e0 = 1
e^z \ne 0
{d \over dz} e^z = e^z

para todos zw. A função exponencial no plano complexo é uma função holomórfica que é periódica com o período imaginário 2πi que pode ser escrita como

eabiea(cosbisinb)

onde ab são valores reais. Essa fórmula conecta a função exponencial com as funções trigonométricas, e essa é a razão que estendendo o logaritmo neperiano a argumentos complexos resultam na função multivalente ln(z). Nós podemos definir como uma exponenciação mais geral:: zwewlnz para todos os números complexos zw.

Isto é também uma função multivalente. As leis exponenciais mencionadas acima permanecem verdade se interpretadas propriamente como afirmações sobre funções multivalentes.

É fácil ver, que a função exponencial descreve qualquer curva no plano complexo a uma espiral logarítmica no plano complexo com centro em 0, nada como o caso de uma reta paralela com os eixos reais ou imaginários descrevem uma curva ou um círculo.

Função exponencial para matrizes e álgebras de Banach

A definição de função exponencial exp dada acima pode ser usada palavra por palavra para cada álgebra de Banach, e em particular paramatrizes quadradas. Neste caso temos

exyexey

se xyyx (deveríamos adicionar a fórmula geral envolvendo comutadores aqui)

e0 = 1
ex é invertível com inverso ex
a derivada da exp no ponto x é aquela descrição linear que transforma u em u·ex.

No contexto das álgebras de Banach não comutativas, como as álgebras de matrizes ou operadores no espaço de Banach ou de Hilbert, a função exponencial é freqüentemente considerada como uma função de um argumento real:

f(t) = etA

onde A é um elemento fixo da álgebra e t é qualquer número real. Essa função tem importantes propriedades:

f(st) = f(s)f(t)
f(0) = 1
f‘(t) = Af(t)

Mapa exponencial nas álgebras de Lie

O “mapa exponencial” que passa uma álgebra de Lie a um grupo de Lie compartilha as propriedades acima, o que explica a terminologia. De fato, desde que R é uma álgebra de Lie de um grupo de Lie de todos os números positivos reais com multiplicação, a função exponencial para argumentos reais é um caso especial da situação da álgebra de Lie. Similarmente, desde que a álgebra de Lie M (nR) de todas as matrizes reais quadradas pertence ao grupo de Lie de todas as matrizes quadradas invertíveis, a função para matrizes quadradas é um caso especial do mapa exponencial da álgebra de Lie.

Esta matéria eu tirei do Wikipédia.

Encontrei uma página que achei muito interessante a explicação, sugiro que leia ela também para ficar bem por dentro da matéria. Clique no link abaixo:

Projeto Licenciar

Se você quer se aprofundar mais na matéria de Exponenciais sugiro uma lida em outro post meu : Equações Exponenciais.

Se o site está te ajudando a atingir seus objetivos, que tal também me ajudar a levar  informação de qualidade para todos. Clique aí no banner abaixo, é muito simples.


Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s