Skip to content

Regras de Três Simples e Compostas

29/03/2011

Regra de três simples

Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.

Passos utilizados numa regra de três simples:


1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.

2º) Identificar se as grandezas são diretamente ou inversamente proporcionais.

3º) Montar a proporção e resolver a equação.

Exemplos:

1) Com uma área  de absorção de raios solares de 1,2m2, uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m2, qual será a energia produzida?

Solução: montando a tabela:

Área (m2) Energia (Wh)
1,2 400
1,5 x

Identificação do tipo de relação:

regra3_1.gif (1652 bytes)

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a área de absorção, a energia solar aumenta.
Como as palavras correspondem (aumentando – aumenta), podemos afirmar que as grandezas sãodiretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

regra3_2.gif (1724 bytes) regra3_3.gif (1426 bytes)

Logo, a energia produzida será de 500 watts por hora.


2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h?

Solução: montando a tabela:

Velocidade (Km/h) Tempo (h)
400 3
480 x

Identificação do tipo de relação:

regra3_4.gif (1814 bytes)

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a velocidade, o tempo do percurso diminui.
Como as palavras são contrárias (aumentando – diminui), podemos afirmar que as grandezas sãoinversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

regra3_5.gif (1857 bytes) regra3_6.gif (2058 bytes)

Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.


3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço?

Solução: montando a tabela:

Camisetas Preço (R$)
3 120
5 x

Observe que: Aumentando o número de camisetas, o preço aumenta.
Como as palavras correspondem (aumentando – aumenta), podemos afirmar que as grandezas sãodiretamente proporcionais. Montando a proporção e resolvendo a equação temos:

regra3_7.gif (1325 bytes)

Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.


4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho?

Solução: montando a tabela:

Horas por dia Prazo para término (dias)
8 20
5 x

Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta.
Como as palavras são contrárias (diminuindo – aumenta), podemos afirmar que as grandezas sãoinversamente proporcionais. Montando a proporção e resolvendo a equação temos:

regra3_8.gif (1931 bytes)

Regra de três composta

A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.

Exemplos:

1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3?

Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:

Horas Caminhões Volume
8 20 160
5 x 125

Identificação dos tipos de relação:
Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).

regra3_9.gif (1192 bytes)

A seguir, devemos comparar cada grandeza com aquela onde está o x.
Observe que:
Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna).

Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação édiretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com oproduto das outras razões de acordo com o sentido das setas.

Montando a proporção e resolvendo a equação temos:

regra3_10.gif (1291 bytes) regra3_11.gif (2147 bytes)

Logo, serão necessários 25 caminhões.


2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?

Solução: montando a tabela:

Homens Carrinhos Dias
8 20 5
4 x 16

Observe que:
Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão).

Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também édiretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com oproduto das outras razões.

Montando a proporção e resolvendo a equação temos:

regra3_12.gif (1320 bytes)

Logo, serão montados 32 carrinhos.


3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro?

Inicialmente colocamos uma seta para baixo na coluna que contém o x. Depois colocam-se flechasconcordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para asinversamente proporcionais, como mostra a figura abaixo:

regra3_13.gif (1894 bytes)

Montando a proporção e resolvendo a equação temos:

regra3_14.gif (2375 bytes)

Logo, para completar o muro serão necessários 12 dias.


Exercícios complementares

Agora chegou a sua vez de tentar. Pratique tentando fazer esses exercícios:

1) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas?  Resposta: 6 horas.

2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão?   Resposta: 35 dias.

3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m?  Resposta: 15 dias.

4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h?  Resposta: 10 horas por dia.

5) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos?  Resposta: 2025 metros.

Esta matéria foi retirada do site Só Matemática.

Para aprofundar mais seus conhecimentos clique nos links abaixo para praticar alguns exercícios:

Wikilivros

Cola na web

Se o site está te ajudando a atingir seus objetivos, que tal também me ajudar a levar  informação de qualidade para todos. Clique aí no banner abaixo, é muito simples.



About these ads
3 Comentários
  1. Carlos permalink

    Estou gostando muito de estudar aqui, estou aprendendo muito!
    Obrigado!

  2. Lucélia Vieira permalink

    Eu nvte para agradecer. Muito bom esse conteúdo, meu esposo tá gostando muito desse site, bom d+++++.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

Seguir

Obtenha todo post novo entregue na sua caixa de entrada.

Junte-se a 2.749 outros seguidores

%d blogueiros gostam disto: